If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3x^2-2=4
We move all terms to the left:
2/3x^2-2-(4)=0
Domain of the equation: 3x^2!=0We add all the numbers together, and all the variables
x^2!=0/3
x^2!=√0
x!=0
x∈R
2/3x^2-6=0
We multiply all the terms by the denominator
-6*3x^2+2=0
Wy multiply elements
-18x^2+2=0
a = -18; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-18)·2
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*-18}=\frac{-12}{-36} =1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*-18}=\frac{12}{-36} =-1/3 $
| 13-4x=-31 | | X+136=x+56 | | 11x-6=9x+14 | | 35=252+-x | | 4(6x+7)-(3x-5)=40 | | 16=w+4 | | 6-4(6x+7)-(3x-5)=40 | | 6(r-4)+3r=12r-8 | | 11x+14=9x | | 3=q-3 | | 1/5+6=3/5x+5 | | 79+x=x+119 | | (3x+20)+70=180 | | 1=u-10 | | H(t)=-32t^2+288t+1152 | | (3x+20)+170=180 | | 2x+1/4+x+1/2=5 | | 10x+9=19x-3 | | 4=-4/9+v | | 7x+52=3 | | 1+8(x-5)=9-8(x-7) | | Y=-4x^2+80x+6,000 | | 4x-13=52 | | 7u=3u+12 | | 8a-3=3+1/2a | | 1/3x+15=-45 | | (-7u−4)=0 | | x3+x2–9x–9=0 | | 7x+1=2x+57 | | 6x-7+x+13=180 | | -4(k-2)=12 | | 8x-4)+(17x-23)+(3x+17)=180 |